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We present a detailed analysis of a recently proposed perfectly matched layer
(PML) method for the absorption of acoustic waves. The split set of equations is
shown to be only weakly well-posed, and ill-posed under small low order pertur-
bations. This analysis provides the explanation for the stability problems associated
with the spilt field formulation and illustrates why applying a filter has a stabilizing
effect. Utilizing recent results obtained within the context of electromagnetics, we
develop strongly well-posed absorbing layers for the linearized Euler equations. The
schemes are shown to be perfectly absorbing independent of frequency and angle of
incidence of the wave in the case of a non-convecting mean flow. In the general case of
a convecting mean flow, a number of techniques is combined to obtain absorbing lay-
ers exhibiting PML-like behavior. The efficacy of the absorbing layers is illustrated
though the solution of aero-acoustic benchmark problems.c© 1998 Academic Press

1. INTRODUCTION

When solving wave-dominated problems, as they appear in aero-acoustics or electro-
magnetics, one often encounters the problem of how to accurately obtain infinite domain
solutions using a finite computational domain. The truncation of the computational domain
must be done in a way that avoids, at least approximately, the excitation of reflected waves
which might otherwise contaminate the computational domain and falsify the solution.

The issue of how to properly devise such boundary conditions at an artificial compu-
tational boundary has received much attention in past. The use of characteristic boundary
conditions [1] is appealing due to its simplicity, but is only accurate for close to perpendic-
ular incidence of the wave. More elaborate schemes involve radiation boundary conditions
based on localization of the Dirichlet-to-Neumann map [2, 3] or an asymptotic expansion
of the far-field solution [4]. A fairly recent review of there methods can be found in [5].
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Alternatives to such schemes involve the introduction of buffer or sponge layers in which
the waves are either damped [6], accelerated to supersonic conditions [7], decelerated [8],
or attenuated by combinations thereof [9]. The construction of these latter schemes are in
most cases based on physical arguments with little theoretical evidence of their, often quite
remarkable, performance.

In the context of electromagnetics, Berenger [10] recently proposed a novel way by which
to derive the sought after absorbing boundary conditions. By splitting Maxwells equations
in an unphysical manner, additional degrees of freedom are introduced. This allows for
the construction of non-reflecting absorbing layers with the remarkable property that they
maintain their absorbing properties irrespective of the frequency and angle of propagation
of the incident wave, i.e., this approach appears to provide an optimal absorbing boundary
condition and have spawned a hectic research into such layers, termed Perfectly Matched
Layers (PML). While the PML scheme has been applied successfully during the last years,
it was recently proven [11] that the particular splitting of Maxwells equations employed in
[10] renders the resulting set of equations weakly well-posed and ill-posed under arbitrary
low order perturbations, i.e., numerical solution of these equations can be expected to be
unconditionally unstable, an example of such being provided in [11]. This realization has
focused the attention towards alternative well-posed formulations of the electromagnetic
PML methods and several such schemes have been proposed in recent years, see for instance
[12–16]. Hence, although the original PML schemes have proven erroneous, the general
approach has proven extremely fruitful and has allowed for the computation of problems
in electromagnetics of unsurpassed accuracy.

Inspired by the success of the PML methods for Maxwells equations, Hu [17] recently
proposed a PML method for the equations of acoustics by taking an approach very similar
to the one originally developed for Maxwells equations, i.e., by splitting the equations of
acoustics in an unphysical manner. Although the general approach is the same as in [10],
the details of the split-field formulation is different, hence leading to a different PML
scheme with different properties. Indeed, contrary to most work within the community of
electromagnetics, Hu [17] reported the need for using a low pass filter inside the absorbing
layers to maintain stability of the scheme. A similar observation was made in [18] where no
filter was applied and the numerical solutions are found to exhibit exponential growth. This
points to an inherent instability of the scheme and in [18] a partial explanation, in terms of
loss of strong well-posedness in certain special cases, is provided.

In the present work we provide a complete analysis of the split PML scheme of [17],
confirming the speculations put forward in [18] in a more general context. Indeed, the
scheme of [17] is found to be only weakly well-posed in the two-dimensional case and
ill-posed under low order perturbations, although the details of the nature of the instability
is different from that discussed in [11]. We proceed by presenting a well-posed PML scheme
for the non-convective equations of acoustics and, for the more general convective case, a
well-posed absorbing layer exhibiting PML-like behavior.

The remainder of this paper is organized as follows. In Section 2 we introduce the
equations of acoustics as obtained from the linearized Euler equations. Section 3 contains
the first part of the paper in which we present an analysis of the PML method recently
proposed in [17] and we provide an explanation for the problems of maintaining stability as
reported in [17, 18]. This leads to Section 4 where we present an alternative to the unstable
PML scheme. For the case of a non-convection mean flow we construct a well behaved
PML method and illustrate its performance through numerical experiments. For the general
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case of a convective mean flow, we propose to apply a combination of techniques to arrive at
absorbing layers with PML-like behavior and support the reasoning by numerical studies.
Section 5 contains a few concluding remarks.

2. THE EQUATIONS OF ACOUSTICS

We shall consider the two-dimensional, linearized, compressible Euler equations on the
form

∂q
∂t
+ A

∂q
∂x
+ B

∂q
∂y
= 0, (1)

where the state vector,q, and the constant matrices,A andB, are given as

q=


ρ

u
v

p

 , A =


M 1 0 0
0 M 0 1
0 0 M 0
0 1 0 M

 , B =


0 0 1 0
0 0 0 0
0 0 0 1
0 0 1 0

 . (2)

These equations are recovered from the Euler equations by linearizing around the uniform
mean state,(ρ0, u0, 0, p0), and introducing the normalization

t = tc0

L
, x = x

L
, y = y

L
, q=

[
ρ

ρ0
,

u

c0
,
v

c0
,

p

ρ0c2
0

]T

,

whereL represents a characteristic length whilec0 =
√
γ p0/ρ0 refers to the sound speed

of the mean flow. In this context, Eqs. (1)–(2), describe the propagation and interaction of
waves in a parallel uniform flow with a Mach number,M = u0/c0. Choosingv0 = 0 does
not introduce any restrictions on the analysis as the general situation may always be rotated
to arrive at this particular case.

A deeper understanding of the underlying properties, physical as well as mathematical,
of Eqs. (1)–(2) can be gained by introducing the similarity transform

S= 1

2


1 2 0 1
1 0 0 −1
0 0 2 0
1 0 0 1

 , S−1 =


0 1 0 1
1 0 0 −1
0 0 1 0
0 −1 0 1

 ,
to obtain

S−1AS=


M + 1 0 0 0

0 M 0 0
0 0 M 0
0 0 0 M − 1

 , S−1BS= 1

2


0 0 2 0
0 0 0 0
1 0 0 1
0 0 2 0

 ,
whereS−1q= R = [ p+ u, ρ − p, v, p− u]T represents the characteristic variables. We
recognize the two convective entropy (R2) and vorticity waves (R3), respectively, and the
co- (R1) and counter-propagating (R4) sounds waves through which the complete physical
scenario can be understood.

However, the similarity transformation also shows thatA andB can be transformed such
as to become symmetric simultaneously by multiplication with a positive definite diagonal
matrix. This implies that Eqs. (1)–(2) form a strongly well-posed hyperbolic system [19] and



            

132 J. S. HESTHAVEN

that the well-posedness of Eqs. (1)–(2) is unaffected by the addition of low order terms. As
we shall see shortly, lack of strong well-posedness can have serious consequences and make
the construction of convergent numerical schemes impossible due to inherent instabilities
of the system of equations.

By inspecting Eqs. (1)–(2) it is clear that the equation forρ plays a passive role only.
Hence, for the sake of simplicity, and without loss of generality, we shall perform the
subsequent analysis for the [u, v, p]T system only as the behavior ofρ can be inferred from
p. However, the computational results are obtained for the full set of equations.

3. AN ANALYSIS OF THE SPLIT-FIELD PML METHOD

Following the line of thought initiated in [10] for the development of perfectly matched
layers (PML) for electromagnetics, Hu [17] recently proposed a split-field PML scheme for
the two-dimensional linearized Euler equations, Eqs. (1)–(2). Different from the approach
of [10], in which only some of the field components are split, in [17] all the field components
of q are split to arrive at a set of equations to be solved in the layer of the form

∂qs

∂t
+ As∂qs

∂x
+ Bs∂qs

∂y
+ Csqs = 0, (3)

whereqs= [u1, u2, v1, v2, p1, p2]T , such thatp= p1 + p2 and likewise for the velocity
components. The 6× 6 matrices in Eq. (3) are given as [17]

As =



0 0 0 0 1 1
M M 0 0 0 0
0 0 0 0 0 0
0 0 M M 0 0
1 1 0 0 M M
0 0 0 0 0 0


, Bs =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 1 0 0


, (4)

while Cs= diag(σx, σx, σy, σx, σx, σy) represents the diagonal matrix responsible for the
dissipation of the waves. Note that we have reduced the system of equations as compared
to [17] by removing the equation describing the behavior of the density,ρ. However, as
discussed above this does restrict the generality of the subsequent analysis.

The use of split variables may, at first, seem perfectly legal since forσx = σy= 0 the
original equations are recovered by adding the equations for the split fields. This reasoning,
however, is faulty as we shall show in the following.

Let us first address the issue of well-posedness of the split system of equations,
Eqs. (3)–(4), and recall that the question of well-posedness of the system is unaffected
by the low order term,Csqs, which we therefore neglect. We begin by considering the
diagonalizing similarity transform ofAs given as

S=



0 0 −1 1
M−1 0 1

M+1

0 0 1 −M
M−1 0 M

M+1

0 −1 0 0 0 0
0 1 0 0 1 0
−1 0 0 1 0 1
1 0 0 0 0 0


, S−1 =



0 0 0 0 0 1
0 0 1 0 0 0
−M2

M2−1
−1

M2−1 0 0 M
M2−1

M
M2−1

− 1
2 − 1

2 0 0 1
2

1
2

0 0 1 1 0 0
1
2

1
2 0 0 1

2
1
2


,



             

PML METHODS FOR ACOUSTICS 133

resulting inS−1AsS= diag(0, 0, 0,M − 1,M,M + 1), i.e., 3 zero eigenvalues have been
introduced as a consequence of the splitting. It is straightforward to show that these three
additional eigenvalues imply thatSandS−1 cannot transformBs into a matrix that can be
made symmetric by multiplication with a positive definite diagonal matrix, i.e.,As andBs

cannot be symmetrized simultaneously [20]. This observation, however, is not conclusive
in terms of lack of strong well-posedness of Eqs. (3)–(4), but it remains a concern as the
split set of equations has lost an important symmetry property as compared to Eqs. (1)–(2).

To continue the analysis we shall focus the attention on the Cauchy problem, i.e., neglect
the effect of the boundary conditions in Eqs. (3)–(4). We introduce the spatial Fourier
transform ofqs as

qs(x, y, t) =
∫ ∞
−∞

∫ ∞
−∞

q̂s(kx, ky, t)e
i (kx x + ky y) dkx dky,

where q̂s= [û1, û2, v̂1, v̂2, p̂1, p̂2]T represents the Fourier coefficients of the split field
components. This yields the initial value problem

∂q̂s

∂t
= P(kx, ky)q̂s, (5)

where the symbol,P(kx, ky), is

P(kx, ky) = −i



0 0 0 0 kx kx

Mkx Mkx 0 0 0 0
0 0 0 0 ky ky

0 0 Mkx Mkx 0 0
kx kx 0 0 Mkx Mkx

0 0 ky ky 0 0


. (6)

Integration of Eqs. (5)–(6) is done by first realizing that the evolution of the individual split
components depends only on the un-split variables. Hence, the solution for the split field
variables can be derived from the solution of the Cauchy problem of Eqs. (1)–(2).

Considering the initial conditionŝq(0)= [û0, v̂0, p̂0]T , the solution to Eqs. (1)–(2) is
given on the form

q̂(t) = ae−i (Mkx−ν)t + be−i (Mkx+ν)t + ce−i Mkxt , (7)

with the three vectorsa= [au,av,ap]T , b= [bu, bv, bp]T , andc= [cu, cv, cp]T , having the
entries

a= µ− p̂0ν

2ν2

 kx

ky

−ν

 , b= µ+ p̂0ν

2ν2

 kx

ky

ν

 , c= 1

ν2

 û0ν
2− kxµ

v̂0ν
2− kyµ

0

 ,
and

ν =
√

k2
x + k2

y, µ = û0kx + v̂0ky.

In Eq. (7) we immediately recognize the three types of waves, inherent in the linearized
Euler equations, giving rise to three different wave speeds. Moreover, we note thata andb
as well ascare bounded for all values ofkx andky. This confirms that Eqs. (1)–(2) constitute
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a strongly well-posed problem for which the solution can be bounded up to exponential
growth in time by the norm of the initial data.

Integrating the solution, Eq. (7), following Eqs. (5)–(6), to obtain the solution for
q̂s

2= [û2, v̂2, p̂2]T , we recover

q̂2(t)− q̂2(0) = as
2e−i Mkx−ν

2 t + bs
2e−i Mkx+ν

2 t + cs
2e−i Mkx

2 t , (8)

where

as
2 = −i

sin[((Mkx − ν)/2)t ]
(Mkx − ν)/2

Mkxau

Mkxav
kyav

 , bs
2 = −i

sin[((Mkx + ν)/2)t ]
(Mkx + ν)/2

Mkxbu

Mkxbv
kybv

 ,
and

cs
2 = −i

sin[(Mkx/2)t ]

Mkx/2

Mkxcu

Mkxcv
kycv

 .
An equivalent result appears upon integration ofq̂1. For the split set of equations to be
strongly well-posed we must ensure that the solution, Eq. (8), remains bounded by the
norm of the initial data for any choice ofkx andky, or, in other words,as

2, b
s
2, andcs

2, must
remain bounded for any combination ofkx andky. It is easily verified thatas

2 andbs
2 indeed

remain bounded for all values ofkx andky provided the mean flow is purely subsonic, i.e.,
|M |< 1. This is only a natural constraint as reflections from the open boundary are unable
to enter the computational domain in case of supersonic flow conditions.

The situation forcs
2 is very different. In the limit where|Mkx| → 0 and|ky|À |Mkx|we

can only bound one of the terms incs
2 as

∣∣∣∣kycv
sin[(Mkx/2)t ]

Mkx/2

∣∣∣∣ ≤ |cvky|t, (9)

i.e., we recover a term that grows in time with a coefficient,ky, being unbounded. Hence,
‖ p̂2‖ cannot be bounded by the norm of the initial conditions, but rather depends also on
the norm of the derivatives of the initial conditions. Consequently, the split set of equations,
Eq. (3), is only weakly well-posed with the solution depending not only on the initial
conditions but also on the smoothness of these data.

It is noteworthy that, as is the case for the split field perfectly matched layer methods of
electromagnetics [10, 11], in the case where|ky| =0 strong well-posedness is recovered.
Hence, the one-dimensional version of the split field method for the perfectly matched
layers of acoustics is valid and well suited for numerical solution.

The loss of derivatives is as such not a severe problem. However, contrary to strongly
well-posed hyperbolic problems, it is well known that weakly well-posed systems may
become ill-posed under low order perturbations [19], thus rendering the systems of equations
inherently unstable and proper numerical solution impossible.
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To see this, we introduce a low order perturbation of the form

Eq̂s =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 ε −ε 0 0
0 0 0 0 0 0
0 0 ε −ε 0 0


q̂s,

i.e., the perturbation corresponds to a small perturbation in the split field velocity component,
v̂1 andv̂2, however maintaining that ˆv= v̂1+ v̂2. We consider the perturbed Cauchy problem

∂q̂s

∂t
= (P(kx, ky)+ E)q̂s = P̃q̂s,

and recall that a necessary condition for the perturbed problem to remain well-posed is that
the real parts of the eigenvalues ofP̃ remain in the left half plane for any choice ofkx and
ky and, preferably, also for any choice ofε andM . The first 2 eigenvalues of̃P are given as
λ1= λ2 = 0, while the remaining 4 eigenvalues appear as the roots of a 4th order complex
polynomial.

Rather than solving the complex polynomial directly, we apply the Routh–Hurwitz criteria
to arrive at conditions under which the perturbed initial value problem remains well-posed.
This procedure yields, as a necessary condition for well-posedness, that

|Mkx| > |ky|.

which is very similar to the limit for boundedness ofcs
2, Eq. (9), and confirms that the

weakly well-posed system, arrived at by splitting the linearized Euler equations in order
to develop the perfectly matched layers, becomes ill-posed under low order perturbations.
We should note that there is nothing particular about the low order perturbation,E, i.e.,
ill-posedness can be shown for perturbations of the velocity components as well as of the
pressure.

In an actual numerical implementation of the split field equations the sensitivity to per-
turbations, which are bound to happen due to finite precision, can be expected to result in
severe problems with maintaining stability of the scheme. This is indeed exactly what was
reported in [17, 18] where it was found that applying a filter in the PML layers was necessary
to maintain stability. An indication of why the filter has a stabilizing effect for this problem
is provided by the condition for boundedness, Eq. (9). If the filter is sufficiently strong as
to ensure that|Mkx|> |ky| for all values of|kx| and|ky|, e.g., by applying a strong filter
alongy, the system remains well-posed and, as a consequence, the scheme might recover
stability or at least postpone the effects of the instability.

4. THE CONSTRUCTION OF WELL-POSED PML METHODS

The weakly well-posedness and associated ill-posedness under small perturbations of
the split-field PML equations were recently shown [11] also for the original PML method
as proposed in [10] and several strongly well-posed PML methods for the equations of
electromagnetics have recently been proposed, see, e.g., [12–16] and references therein.
Hence, rather than attempting an ab initio development of perfectly absorbing layers for the
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linearized Euler equations, we shall utilize the recent developments to arrive at the sought
after well behaved methods.

A strongly well-posed PML method for the Maxwells equations is proposed in [16] and
tested numerically in [15] and we shall base the remaining part of this paper on this particular
formulation. We should emphasize though that alternative well-posed formulations might
equally well be employed as the basis of the development of the PML methods for the
equations of acoustics.

4.1. The Non-Convecting Case

Let us first consider the simple case of a non-convecting free-stream, i.e.,M = 0 in
Eqs. (1)–(2). We propose to consider an absorbing layer for the non-convecting linearized
Euler equations of the form [16]

∂ρ

∂t
= −∂u

∂x
− ∂v
∂y
− ε′Qx − µ′Qy,

∂u

∂t
= −∂p

∂x
− 2εu− εPx,

∂v

∂t
= −∂p

∂y
− 2µv − µPy,

∂p

∂t
= −∂u

∂x
− ∂v
∂y
− ε′Qx − µ′Qy,

∂Px

∂t
= εu, ∂Qx

∂t
= −εQx + u,

∂Py

∂t
= µv, ∂Qy

∂t
= −µQy + v.

(10)

Here,ε= ε(x) andµ=µ(y) signifies the non-dimensional damping parameters. We imme-
diately note that since the Euler equations are altered by low-order terms only, the system
of partial differential equations is well-posed by construction while the additional freedom,
required for obtaining the sought after properties of the matched layers, is introduced through
4 additional equations describing the development of the artificial fields,Px andQx, along
x and, likewise,Py and Qy, alongy. In general, we assume that the absorbing region is
outside a square bounded by|x| =a and|y| =b while the specification of the parameters,
ε andµ remains open at this point in time.

To come to an understanding of the properties of this absorbing layer we follow the
analysis introduced in [11, 16] and study the behavior of a plane wave hitting the layer
interface, which we assume is positioned atx= 0. As the system is purely linear, it poses
no restrictions only to consider the behavior of plane waves as any type of excitation can
be decomposed into a superposition of such plane waves of the form

 u
v

p

 =
αβ

1

 eiω(t−αx−βy), (11)

whereα2+β2= 1 represents the arbitrary angle of incidence andω signifies the normalized
frequency of the incoming wave.
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We shall seek solutions inside a layer in thex-direction, i.e.,µ(y)= 0 in Eq. (10), of the
form 

u
v

p
Qx

Px

 =


ũ(x)
ṽ(x)
p̃(x)

Q̃x(x)
P̃x(x)

 eiω(t−βy). (12)

Introducing Eq. (12) into Eq. (10) yields the equations

ṽ = β p̃, Q̃x =
1

ψ
ũ, P̃x = ε

iω
ũ, (13)

expressing 3 of the 5 variables in terms ofũ and p̃, which are governed by the coupled
equations

d

dx
p̃ = −ψ

2

iω
ũ,

d

dx
[ψ ũ] = −iωψα2p̃,

where we have introducedψ(x)= iω+ ε(x). Combining these two equations yields a
second order variable coefficient ODE forp̃ on the form

d

dx

(
1

ψ

d

dx
p̃

)
= ψα2p̃,

with the analytical solution

p̃(x) = Aeα
∫ x

0
ψ(η) dη + Be−α

∫ x

0
ψ(η) dη

, (14)

through which the solution tõu appears as

ũ(x) = − iω

ψ2

d

dx
p̃(x) = −α iω

ψ

(
Aeα

∫ x

0
ψ(η) dη − Be−α

∫ x

0
ψ(η) dη

)
. (15)

The remaining fields are then given from this using Eq. (13).
The specification ofA andB naturally depends on the boundary conditions we choose

to impose and there are indeed several ways of doing so. We shall assume that the layer has
a finite width,d, and shall hence need to impose boundary conditions atx= 0 andx= d.
For the solution of hyperbolic systems it is most natural to impose characteristic boundary
conditions by specifying the incoming characteristics. This amounts to requiring thatp+u
remains continuous across the interfacex= 0 while p−u= 0 atx= d, i.e., no information
enters the layer. Imposing these boundary conditions, using Eq. (11), implies

p̃(0)+ ũ(0) = 1+ α, p̃(d)− ũ(d) = 0,

from which we arrive at(α 6= 0)

A = α − γ
α + γ e−2α I B, B = 1

1+ α−γ
α+γ

1−α
1+αe−2α I

, (16)
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where

γ = ε(d)+ iω

iω
, I =

∫ d

0
ψ(η) dη = iωd +

∫ d

0
ε(η) dη.

Combining Eq. (13) with Eqs. (14)–(16) yields the complete solution inside the layer on
the form

u(x, y, t) = −Bα
iω

ε(x)+ iω

[
1− α − γ

α + γ e2iωα(x−d)e−2α
∫ d

x
ε(η) dη

]
× eiω(t−αx−βy)e−α

∫ x

0
ε(η) dη

,

v(x, y, t) = βB

[
1+ α − γ

α + γ e2iωα(x−d)e−2α
∫ d

x
ε(η) dη

]
eiω(t−αx−βy)e−α

∫ x

0
ε(η) dη

,

p(x, y, t) = B

[
1+ α − γ

α + γ e2iωα(x−d)e−2α
∫ d

x
ε(η) dη

]
eiω(t−αx−βy)e−α

∫ x

0
ε(η) dη

,

Px(x, y, t) = −Bα
ε(x)

ε(x)+ iω

[
1− α − γ

α + γ e2iωα(x−d)e−2α
∫ d

x
ε(η) dη

]
× eiω(t−αx−βy)e−α

∫ x

0
ε(η) dη

,

Qx(x, y, t) = Bα
iω

(ε(x)+ iω)2

[
1− α − γ

α + γ e2iωα(x−d)e−2α
∫ d

x
ε(η) dη

]
× eiω(t−αx−βy)e−α

∫ x

0
ε(η) dη

.

(17)

Since| iω
ε+iω |< 1 all components in the layer are bounded by|p| which is bounded like

α
∂|p|
∂x ≤ 0 with equality only for grazing waves, i.e., forα= 0. Thus, all waves are damped

independent of frequency and angle of incidence as should be required by a truly perfectly
matched layer.

We observe that the fields at the layer interface,x= 0, in general are discontinuous with
a jump proportional

1± α−γ
α+γ e−2iωαde−2α I

1+ α−γ
α+γ

1−α
1+αe−2α I

,

which, however, is exponentially small.
Naturally, an analysis equivalent to the above can be completed for a PML layer in the

y-direction while a corner region, in whichε > 0 as well asµ > 0, can be analyzed using
separation of variables, yielding results similar to the above.

4.1.1. A Numerical Example

In order to confirm the theoretical analysis put forward in the previous section and study
the efficiency of this new PML method, we have implemented the scheme on an equidistant
grid using a 4th order centered finite-difference scheme with 3rd order closure for stability
in space, while we use a 4th order Runge–Kutta scheme for advancing the equations in time.
The time step,1t , is chosen to be well below the stability limit. Contrary to the scheme
proposed in [17], there is no need for applying a filter to maintain stability and, to emphasize
this point, we have not used any filters in the present work.
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The initial conditions are taken from benchmark problems of computational aeroacoustic
[21]

ρ(x, y) = e
−(ln 2) (x−xa)2+(y−ya)2

δ2a + 0.1e
−(ln 2)

(x−xb)
2+(y−yb)

2

δ2
b ,

u(x, y) = 0.05(y− yb)e
−(ln 2)

(x−xb)
2+(y−yb)

2

δ2
b ,

v(x, y) = −0.05(x − xb)e
−(ln 2)

(x−xb)
2+(y−yb)

2

δ2
b ,

p(x, y) = e
−(ln 2) (x−xa)2+(y−ya)2

δ2a ,

(18)

where(xa, ya) signifies the center of the initial sound pulse of widthδa, while(xb, yb) refers
to the center of the initial vorticity and entropy pulse of widthδb.

The profiles,ε(x) andµ(y), required in Eq. (10), are chosen as

ε(x) = Cx

( |x − a|
xPML

)n

, µ(y) = Cy

( |y− b|
yPML

)n

. (19)

Here we assume that the computational domain is bounded by|x| ≤ a and|y| ≤ b while
xPML and yPML refers to the width of the absorbing layers alongx and y, respectively.
The constants,Cx,Cy, andn, control the strength of the layer and we have chosen these
parameters asCx =Cy= 2 andn= 3. The auxiliary equations of Eq. (10) are advanced in
time using the same scheme and time-step as for the Euler equations themselves.

We consider the problem in the computational domain(x, y) ∈ [−50, 50]2 with the ab-
sorbing layers outside and position the acoustics pulse at(xa, ya)= (−25, 0)with a width of
δa= 3 while the non-propagating vorticity/entropy pulse is positioned at(xb, yb)= (25, 0)
with a width ofδb= 4. The absorbing layers are terminated using characteristic boundary
conditions as discussed during the analysis of the scheme.

In Fig. 1 we show the pressure field at various times as computed using1x=1y= 1
and1t = 1 andxPML= yPML= 10, i.e., 10 computational cells in the absorbing layer.

As expected from the analysis, the sound wave propagates undisturbed out of the compu-
tational domain with no visible reflections. The high frequency noise visible on the contours
is a consequence of the accuracy of the scheme and the lack of filtering rather than a re-
sult of reflections as can also be observed on Fig. 2, where we show theu-velocity field
propagating undisturbed out of the computational domain.

To verify the dependency of the efficiency of the absorbing layer on the width of the
layer, we have computed the maximum pressure error along the linex= −48 as a function
of time. In Fig. 3 we show the development of the pressure error for various layer widths as
compared with using only characteristic boundary conditions to terminate the computational
domain.

Indeed, as expected we see that even for a layer of only 6 cells does the PML scheme
out-perform the characteristic BC in terms of accuracy while increasing the width of the
layer yields a significant increase in accuracy.

As compared to the scheme in [17] we observe a slight increase in the maximum error,
which is consistent with the observations made in [15] when comparing the split and un-split
PML methods for Maxwells equations. A direct comparison, however, is difficult due to
differences in the computational scheme and boundary conditions. We emphasize, though,
that the present results are arrived at without the use of filtering, thus confirming the stability



         

140 J. S. HESTHAVEN

FIG. 1. Pressure contours for a sound pulse, propagating in a non-convecting medium. The contour levels
are±0.1,±0.05,±0.01, and±0.005 with the computed result given at (a)t = 20, (b) t = 40, (c) t = 60, and
(d) t = 80.

of the scheme given in Eq. (10) and the associated analysis of well-posedness and decaying
properties of the fields inside the layers.

4.2. The Convecting Case

While the development of PML methods for the non-convecting equations of acoustics
relies on the analogy with the equations of electromagnetics, no such connection is possible
in the more general case of a convecting mean flow.

The first idea that comes to mind is to introduce a new reference frame, moving with
a speed ofM alongx and then apply the PML scheme developed in Subsection 4.1. This
approach, however, has the unfortunate consequence that the layer interface becomes a
moving interface in physical space. In [22] the use of a transformation, connecting the
convecting and non-convecting wave-equations, is suggested in order to transform the non-
convecting PML method such as to be useful in the convecting case. While this approach
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FIG. 2. u-velocity contours for a sound pulse, propagating in a non-convecting medium. The contour levels
are±0.1,±0.05,±0.01, and±0.005 with the computed result given at (a)t = 20, (b) t = 40, (c) t = 60, and
(d) t = 80.

turns out to work well for the sound-waves, the resulting PML method has an abruptly
changing convective velocity for the entropy and vorticity waves, resulting in significant
reflections from such waves which become non-convecting exactly at the layer-interface.
Moreover, the correct use of this approach in the corner regions of the PML layers is much
less clear.

Here we shall take a different approach although we shall rely on the PML schemes
developed in the previous section combined with a few other techniques. Introducing layers
in which the flow is accelerated into a supersonic region, thereby eliminating the need for
absorbing boundary conditions, was recently proposed in [7] and modified in [9]. While this
approach is appealing, it has an undesirable effect on the time-step of the whole computation
and primitive sponge layers are still needed to yield an acceptable performance [9].

We propose to decelerate the flow, rather than accelerating it, towards a non-convecting
flow inside the layer and then combine this approach with the PML scheme developed in
Subsection 4.1. While such a scheme cannot be expected to be perfectly absorbing in the
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FIG. 3. Maximum error atx = −48 as a function of time as computed with different types of boundary
conditions and varying width of the PML layer.

case of a finite layer, it does have the potential of a very efficient absorption, provided the
deceleration is done appropriately and that the layer width is chosen accordingly.

We propose to consider a PML-like scheme for the convecting case, Eqs. (1)–(2), of the
form

∂ρ

∂t
+ M [1−m(x)]

∂ρ

∂x
= −∂u

∂x
− ∂v
∂y
− ε′Qx − µ′Qy − σMρ,

∂u

∂t
+ M [1−m(x)]

∂u

∂x
= −∂p

∂x
− 2εu− εPx,

∂v

∂t
+ M [1−m(x)]

∂v

∂x
= −∂p

∂y
− 2µv − µPy − σMv,

∂p

∂t
+ M [1−m(x)]

∂p

∂x
= −∂u

∂x
− ∂v
∂y
− ε′Qx − µ′Qy,

∂Px

∂t
= εu, ∂Qx

∂t
= −εQx + u,

∂Py

∂t
= µv, ∂Qy

∂t
= −µQy + v.

(20)

Hereε andµ remain unchanged from Subsection 4.1 and we have introducedm(x), which
provides the decelerating term by beingm(a) ' 0, withx=a signifying the layer interface,
while we require thatm(a+ xPML) ' 1 at the termination of the absorbing layer. We have
found that using the error function provides a good compromise between steepness and
smoothness such that

m(z) = 1

2

[
1+ 2√

π

∫ σm[z−xm]

0
e−t2

dt

]
, (21)

wherez= (x − a)/xPML and σm and xm control the steepness and relative position of
the profile, respectively. In Eq. (20) we have also introduced simple absorbing terms in
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the equations forρ andv. Since the non-convecting PML scheme only is perfectly absorping
for the sound waves, this is meant to provide a simple mechanism for damping of the entropy
and vorticity waves inside the layer. The parametersσ(x) can be used to control the strength
of this sponge layer forρ andv.

A few comments regarding the scheme, Eq. (20), are in place. First of all we note that
for M = 0 we recover Eq. (10). Also since only the diagonal entries ofA in Eqs. (1)–(2)
are altered the well-posedness of the equations of acoustics remains intact. The philosophy
here is that as the convective waves are slowed down, they approach the case of the non-
convecting acoustics for which Eq. (10) was shown to perform well. Moreover, slowly
decelerating the waves as they enter the layer has the additional advantage that the wave
fronts become increasingly normal to the boundary of the layer—much like the water wave
always being aligned with the beach. Hence, applying characteristic boundary conditions
for truncating the PML layer can be expected to be efficient.

4.2.1. A Numerical Example

In order to establish the soundness of the arguments that lead to the PML-like scheme
in Eq. (20), we have conducted a number of experiments using the scheme and the initial
conditions described in Subsection 4.1.1 withM = 0.5 as the convective Mach number of
the mean flow.

The decelerating term, Eq. (21), is generally specified by usingσm= 5 andxm= 0.5, i.e.,
the profile is centered in the middle of the absorbing layer. We have takenσ(x)= ε(x),
although this is by no means a unique choice and alternatives might well yield better
performance than reported here.

Since the layer now has multiple functions, i.e., it decelerates the waves while also acting
as an absorbing layer, it is expected that, compared to the non-convecting case, slightly
wider layers should be used to achieve an acceptable accuracy.

In Fig. 4 we show the temporal development of the density for the initial conditions
given in Eq. (18) withε andµ being given in Eq. (19) and the parameters chosen as in
Subsection 4.1.1. We have taken the width of the layer asxPML= yPML= 20, i.e., 20
computational cells, and1t = 0.5. The exact solution is given in [21].

As expected, the sound pulse as well as the entropy pulse leaves the computational
domain with no noticeable reflections from the layer. In Fig. 5 we show the development
of theu-velocity component, arriving at similar conclusions.

To address, in a more quantitative manner, the accuracy of the proposed scheme as a
function of the width of the layer we compute the maximum error in the pressure along
the linex= 48 as a function of time. In Fig. 6 we plot the results for increasing the width
of the layer and compare them to the accuracy obtained when using only a characteristic
boundary condition to terminate the computational domain.

Indeed we find that using a layer of only 10 cells yields an overall accuracy of the order of
the approximation error of the scheme and is superior to that obtained using characteristic
boundary conditions only. By increasing the width of the layer 20 cells we observe a
significant reduction, much like the case of the true PML in Fig. 3, of the reflections from
the layer.

As expected, a slightly wider layer, as compared to the results in Subsection 4.1.1, is
required in order to obtain an acceptable accuracy. However, rather than increasing the
number of cells in the layer one could use a mapping, thereby stretching the grid, combined
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FIG. 4. Density contours for a sound and entropy pulse, propagating in a convecting medium withM = 0.5.
The contour levels are±0.1,±0.05,±0.01, and±0.005 with the computed result given at (a)t = 15, (b)t = 30,
(c) t = 45, and (d)t = 60.

with a filter inside the layer. This approach was proposed in [6] for the case of acoustics and
successfully used for the case of electromagnetics in [14, 15]. While this approach certainly
will improve on the performance of the scheme with only a little extra computational effort,
we have chosen not to implement this technique in order to emphasize that the present
schemes do not require the use of a filter in order to maintain stability.

5. CONCLUDING REMARKS

The purpose of this paper has been twofold. In the first part of the paper we provide
an analysis of a recently proposed PML method for the equations of acoustics [17]. As
remarked in [17, 18] these PML methods suffer from intrinsic numerical instabilities and
we gave an explanation for this in terms of loss of well-posedness of the split set of equations
and, as a result of this, the appearance of ill-posedness under small arbitrary perturbations.
Such perturbations will inevitably exist in any numerical implementation of the split set of
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FIG. 5. u-velocity contours for a sound and vorticity pulse, propagating in a convecting medium withM = 0.5.
The contour levels are±0.1,±0.05,±0.01, and±0.005 with the computed result given at (a)t = 15, (b)t = 30,
(c) t = 45, and (d)t = 60.

equations, rendering the schemes inherently unstable unless some kind of high-frequency
damping, e.g., in the form of a low-pass filter, is introduced.

The use of filters is a subject of some controversy. We believe, however, that while there
might be numerous physical arguments for applying filters in various situations, it is a
concern if the numerical scheme, rather than the physics, dictates the need for a filter as is
the case of the PML methods in [17]. Indeed, in situations where smooth initial conditions
and only smooth boundaries are considered it is troublesome if the solution of a linear
hyperbolic system requires the use of filters.

In the second part of the paper we present a PML scheme for the non-convective equations
of acoustics and prove that it is indeed absorbing for all frequencies and angle of incidence
while maintaining strong well-posedness. The properties of the layer are studied in more
detail through numerical tests, confirming the analysis.

In the general case of a convecting mean flow, the approach taken here is less rigorous.
While we present an absorbing layer scheme that exhibits PML-like behavior, it is strictly
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FIG. 6. Maximum error atx= 48 as a function of time as computed with different types of boundary conditions
and varying depth of the absorbing layer.

speaking not a PML method but rather a scheme arrived at by combining several techniques.
The scheme remains well-posed and performs well, although it requires the use of a slightly
wider layer as compared to the true PML method presented earlier. The advantage of this
scheme is that it contains the true PML scheme in the limit of a vanishing mean velocity
and extends trivially to the general case of a mean flow which is not aligned with the axis.

The development of a true well-posed PML method for the convective equations of
acoustics remains an open challenge due the complication introduced by the appearance of
several types of waves and a preferred direction of propagation. We hope to address these
important issues in a future paper.
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